Бетонирование в крупнощитовой опалубке

Щиты   опалубки размером на комнату устанавливают на   тщательно   выверенную поверхность, обеспечивающую заданную отметку опирания выше­расположенного перекрытия. Щиты опалубки подают краном и   с помощью винтовых домкратов приводят в проектное   положение. Перед установкой   противостоящих  щитов   монтируют  дверные коробки, электропроводку и другие закладные элементы. Затем щиты раскрепляют между собой креплениями, воспринимающими давление свежеуложенного бетона. Опалубку перекрытия   уста­навливают, как правило, после демонтажа опалубки стен.   Перед армированием перекрытия опалубку с помощью винтовых домкра­тов в стойках точно выверяют с соблюдением заданной отметки и горизонтальности. Опалубку перекрытий при пролетах до 6 м снимают по достижении бетоном 70% проектной  прочности.  Трудоемкость опалубочных работ  при  использовании  крупнощитовой опалубки 0,2…0,3 чел.-ч/м2.
При бетонировании в зимих условиях или при необходимости ускорить процесс применяют термоактивную опалубку, оснащен­ную электронагревателями.

Метод бетонирования в объемно-переставной (туннельной) опалубке

Сущность метода заключается в бетонировании пере­крытий и несущих поперечных стен с применением блоков тун­нельной опалубки, набираемых из инвентарных секций и перестав­ляемых с этажа на этаж. В зависимости от фронта работ для бе­тонирования здания может быть применено несколько блоков опа­лубки.
Масса одной секции объемной опалубочной формы при шаге поперечных стен до 3,5 м и ширине секции 130 см — 800…1000 кг.
При возведении зданий в объемно-переставной опалубке бето­нирование ведут поэтажно, причем каждый этаж делят на захват­ки, рассчитанные на суточный цикл работы. Работы выполняют в следующем порядке. Устанавливают вдоль продольных несущих стен монтажные подмости, монтируют секции блока опалубки, армируют стены и перекрытия и бетонируют. После набора бето­ном распалубочной прочности секции поочередно с помощью рычажно винтового мехаизма складывают в транспортное положе ние и выкатывают на наружные подмости, откуда краном переста­вляют на новую позицию для бетонирования очередного этажа или захватки. Секции опалубки можно переставлять и с помощью сбалансированной траверсы (рис. Х.52). Секции формы можно де­монтировать и через проемы, оставляемые в перекрытии. Этот спо­соб упрощает демонтаж опалубки-, однако связан с необходимостью последующей заделки проемов.

Технология возведения жилых и гражданских зданий из моно­литного железобетона

Наряду с полносборным заводским домо­строением в стране получает определенное развитие строительство зданий из монолитного железобетона. Этот вид строительства ока­зывается целесообразным:
при (необходимости решения градостроительных проблем за счет строительства нетиповых зданий башенной композиции;
при строительстве в районах высокой сейсмичности или на тер­ритории горных выработок, где предъявляются, повышенные тре­бования к пространственной жесткости зданий;
при возведении зданий в районах, значительно удаленных от домостроительных предприятий.
Строительство зданий из монолитного железобетона можно счи­тать индустриальным, когда работы ведут поточными методами, применяют унифицированные комплекты инвентарной опалубки, все процессы комплексно механизированы и в конечном счете обеспечиваются необходимое качество работ и высокие техни­ко-эконмические показатели.
Практика показала, что при правильной организации и специа­лизации строителыных работ трудоемкость возведения зданий из монолитного железобетона может быть доведена до 2,5… 3 чел.-дней на 1 м2 общей площади, что примерно соответствует уровню, дос­тигнутому в заводском домостроении.

ТЕХНОЛОГИЯ БЕТОНИРОВАНИЯ НАИБОЛЕЕ РАСПРОСТРАНЕННЫХ КОНСТРУКЦИЙ

При выполнении бетонных и железобетонных работ следует руководствоваться положениями действующих строительных норм и правил (СНиП) и указаниями проекта производства работ (ППР), регламентирующими технологические требования к бето­нированию данной конструкции или сооружения.
Перед началом бетонирования тщательно проверяют и офор­мляют актом соответствие проекту опалубки, арматуры, заклад­ных деталей и других элементов конструкции, остающихся в ней-после бетонирования. В частности, проверяют геометрические раз­меры формующего пространства опалубки, ее неизменяемость, прочность и устойчивость. Контролируют также соответствие про­екту армирования закладных деталей, их установку и крепление, исключающие смещение при укладке бетонной смеси, правильность устройства каналов (при предварительно напряженом армирова­нии), расположение отверстий, выпусков.
При бетонировании в скользящей опалубке проверяют нали­чие конусности опалубки, горизонтальность рабочего пола, пра­вильность установки домкратов и т. д.
При применении несъемной опалубки следует обращать внима­ние на прочность крепления ее элементов, необходимую для вос­приятия распорного давления от свежеуложенной бетонной смеси, и наличие выпусков или шероховатой фактуры на формующей поверхности.

Метод торкретирования

Метод торкретирования заключается в нанесении   под давлением сжатого воздуха на бетонную конструкцию,  опалубку   или другие поверхности цементно-песчаных растворов   или   бетонной смеси.
Этим методом исправляют дефекты в бетонных и железобетонных конструкциях, наносят водонепроницаемый слой на поверх­ность резервуаров и различного рода подземных сооружений, укрепляют поверхности горных выработок, бетонируют тонкостен­ные конструкции в односторонней опалубке и т. д.
Для торкретирования используют жесткие торкретные смеси, которые практически не имеют водоотделения. Это и позволяет при нанесении смесей под давлением получать материал с более плот­ной структурой и меньшим водосодержанием, чем при обычном бетонировании. Торкретирование ведут послойно, причем время перерыва между нанесением слоев должно быть таким, чтобы на­носимый слой не разрушал предыдущего. При этом во .избежание уменьшения адгезии это время не должно превышать времени схватывания цемента.

Вакуумирование бетона

Вакуумирование бетона является одним из эффективных техно­логических методов, позволяющих извлечь из уложенного и уже уплотненного бетона около 10.:.20% избыточной (свободной) воды заТворения, благодаря чему существенно улучшаются физико-ме­ханические качества бетона.
Установлено, что при вакуумировании конечная прочность бето­на повышается на 20…25% и уменьшается пластическая усадка. За счет большей плотности вакуумированного бетона (до 2%) со­кращается капиллярный подсос, что повышает противокоррозион­ную стойкость бетона, увеличивает его водонепроницаемость, моро­зостойкость и сопротивление истираемости.
Бетон сразу после вакуумирования приобретает структурную прочность 0,3…0,4 МПа, что достаточно для распалубки ненесу­щих элементов конструкции.
Вакуумирование эффективно для тонкостенных (не более 25…30 см) конструкций. При больших толщинх наблюдается быстрое затухание эффекта вакуумирования, что объясняется как падением градиента разрежения, так и кольматацией образующих­ся капилляров частицами цемента и песка. Поэтому Вакуумирование наиболее эффективно для тонкостенных конструкций с большой удельной площадью поверхности (оболочки, безбалочные перекры­тия, перегородки и т. д.).
Вакуумирование может осуществляться со стороны боковых поверхностей бетонируемых конструкций с помощью опалубочных вакуум-щитов; с верхней открытой -поверхности с помощью на­кладываемых на бетонную смесь переносных вакуум-щитов; внутри конструкций — с помощью вакуум-трубок, размещаемых в толще бетонной смеси. Возможна комбинация этих способов.

Уплотнение бетонной смеси

Одним из условий получения высококачественного бетона с заданными физико-механическими свойствами и высокой степенью удобоукладываемости является его уплотнение вибрацией в процессе укладки или вакуумированием сразу же после укладки в опалубку.
В неуплотненной бетонной смеси содержится значительное ко­личество воздуха: в смеси жесткой консистенции объем воздуха до-.стигает 40… 45%, в пластичной—10… 15%, причем ориентировоч­но считают, что каждый процент воздуха в смеси уменьшает проч­ность бетона на 3 … 5%.

При вибрировании бетонной смеси ей сообщают частые вынуж­денные колебания (импульсы), под действием которых удаляется находящийся, в смеси воздух, нарушается связь между частицами и происходит более компактная их упаковка. Это обеспечивает полу­чене более плотного бетона с морозостойкой, водонепроницаемой и прочной структурой. При этом уменьшается внутреннее трение, защемленные пузырьки воздуха всплывают на поверхность. В ре­зультате резко снижается вязкость смеси и она приобретает свойст­ва тяжелой структурной жидкости. Временно перейдя в текучее состояние, бетонная смесь приобретает повышенную подвижность, растекается по форме и уплотняется под действием, собственной массы.
Эффект от уплотнения бетонной смеси вибрированием зависит от частоты и амплитуды колебаний и продолжительности вибриро­вания.

Технология укладки специальных видов бетонов

К специаль­ным относятся легкие, особо тяжелые, жаростойкие, кислотоупор­ные и некоторые другие бетоны.
Легкие бетоны имеют плотность 500.:. 1800 кг/м3. В зависимости от способов создания пористости различают следующие разновид­ности легких бетонов: на пористых заполнителях (керамзит, аглопорит, туфы л др.); крупнопористые   (беспесчаные)   на  крупном заполнителе без песка; ячеистые, в которых пористость образуется
путем введения пено- или газообразующих веществ.
В строительстве в основном применяют легкие бетоны с плотностью 1400…1800 кг/м3 и  конструкционно-теплоизоляционные   с плотностью 500…1400 кг/м3.
Легкие бетонные смеси готовят в бетоносмесительных машинах принудительного действия, при этом по сравнению с обычными бе­тонами длительность перемешивания увеличивается.
Так как в период приготовления и укладки легкобетонной смеси ористые заполнители интенсивно отсасывают воду из цементного теста, что делает смесь жесткой и трудноукладываемой, для повы­шения ее подвижности необходимо вводить (по сравнению с обыч­ными бетонами) большее количество воды или пластификаторов.
Легкобетонные смеси более подвержены расслаиванию, поэ­тому перевозить их следует в автобетоновозах или автобетоносмеси­телях.

УКЛАДКА БЕТОННОЙ СМЕСИ

Основные требования к укладке бетонной смеси. Перед началом бетонирования проверяют (и оформляют актом) соответствие про­екту опалубки, арматуры, расположения анкерных болтов и за­кладных частей, а также правильность устройства основания.
Перед бетонированием опалубку очищают от грязи и строитель­ного мусора. Деревянную опалубку примерно за 1 ч до укладки смеси обильно смачивают, а оставшиеся щели законопачивают. В металлической опалубке зазоры заделывают алебастром.
Если бетонную смесь укладывают на ранее уложенный бетон основания, то во избежание обезвоживания укладываемой бетон­ной смеси обильно увлажняют бетон основания, причем перед бе­тонированием с поверхности основания удаляют остатки воды.
Если арматура установлена на всю высоту конструкции, при подаче бетонной смеси сверху может быть забрызгана вышераспо­ложенная арматура, что впоследствии уменьшит сцепление бетона с арматурой. Этого следует избегать.

Читать далее «УКЛАДКА БЕТОННОЙ СМЕСИ»

Бетононасоы и пневмонагнетатели

Бетонные смеси перемещают по трубопроводам с помощью бетононасосов и пневмонагнетателей.
Бетононасосы по способу действия подразделяют на периоди­ческого (циклического) и непрерывного действия, по виду при­вода — с механическим и гидравлическим приводом. Они обеспе­чивают более высокие давления, более равномерное движение бе­тонной смеси и высоту подачи до 100…120 м.
На рис. Х.29 показана принципиальная схема одной из рас­пространенных конструкций бетононасосов с гидравлическим при­водом. Бетононасос состоит из рамы, двигателя, приемного бункера с колосниковой решеткой и мешалкой, двух управляющих и двух рабочих гидроцилиндров, маятникового патрубка в виде изогнутой трубы, один конец ко­торой шарнирно соединен с бето-новодом, а второй поочередно соединяется с отверстиями ра­бочих цилиндров насосной стан­ции, подающей рабочую жид­кость в управляющие гидроци­линдры, и системы привода ос­тальных механизмов и золотни­кового распределительного уст­ройства.
Каждая пара цилиндров (уп­равляющего и рабочего) распо­ложена на одной оси, а штоки цилиндров соединены между со­бой муфтами. Поршни каждой пары цилиндров движутся одно­временно во взаимнопротивопо-ложных направлениях. Когда бе­тонная смесь всасывается в один из рабочих цилиндров, поршень второго выталкивает ее через ма­ятниковый патрубок в бетоно­вод.

Читать далее «Бетононасоы и пневмонагнетатели»